Przejdź do głównej treści
+41 52 511 (SUI)     + 1 713 364 5427 (USA)     
Kleje ASI Uszczelniacze Lepkość

Magazyn ASI: Monit w czasie rzeczywistymoring właściwości klejów i uszczelniaczy

Monitorowanie w czasie rzeczywistymoring właściwości klejących i uszczelniających

Nowatorskie instrumenty do zastosowań liniowych i produkcyjnych

Prawidłowe dostosowanie charakterystyki przepływu uszczelniaczy i klejów termoutwardzalnych ma kluczowe znaczenie dla ich wydajności w wysoce zautomatyzowanych, szybkich środowiskach produkcyjnych.

Zautomatyzowane nakładanie uszczelniaczy i klejów, na przykład w przemyśle motoryzacyjnym, wymaga nakładania przewidywalnych, powtarzalnych ilości oraz prawidłowego rozprowadzania i pozostawania na swoim miejscu podczas końcowego okresu wiązania. W branży poligraficznej laminowanie folii z tworzyw sztucznych odbywa się na specjalistycznych, szybkich maszynach, które wymagają ścisłej kontroli lepkości kleju. Żywice, które są nakładane na tekstylia z włókien i maty w celu wytworzenia prepregów kompozytowych, wymagają dokładnego stopniowania żywicy matrycowej.

Charakterystykę płynięcia uszczelniaczy i klejów tradycyjnie mierzy się za pomocą reometru – delikatnego, precyzyjnego przyrządu laboratoryjnego, który wymaga wykwalifikowanego operatora, aby uzyskać dokładne i spójne wyniki. Pomiary reometrem są czasochłonne, ograniczając ich zastosowanie do składników żywicy przed wymieszaniem, a w przypadku systemów wolno utwardzających się wkrótce po wymieszaniu. I wreszcie, wyniki badań reometrycznych w laboratorium często mają ograniczone zastosowanie w monitorowaniu produkcjioring, ponieważ dają wgląd w przeszłość, a nie w obecny stan stosowanego materiału.

Wiskozymetry oparte na elementach wibrujących stanowią realną alternatywę dla pomiarów reometrycznych. Dają szybkie, spójne odczyty i są szczególnie odpowiednie do instalacji w linii. Czujniki rezonansowe mogą być instalowane bezpośrednio w liniach technologicznych transportujących uszczelniacze, kleje lub inne płyny i mogą być używane do monitorowania charakterystyki przepływającego płynu lub mogą być podłączone do systemów sterowania, które dynamicznie dostosowują charakterystykę przepływu płynu poprzez dodanie rozcieńczalniki lub inne dodatki. Taka kontrola lepkości procesu ze sprzężeniem zwrotnym jest dobrze znaną i sprawdzoną metodą na przykład utrzymywania dokładności kolorów podczas długich, szybkich przebiegów w drukarniach fleksograficznych i wklęsłodrukowych. [1]

Rysunek 1. Wiskozymetr inline (po lewej) i zainstalowany w adapterze linii przepływu do zastosowań inline. Rysunek 1. Wiskozymetr inline (po lewej) i zainstalowany w adapterze linii przepływu do aplikacji inline.

Rysunek 1. Wiskozymetr inline (po lewej) zainstalowany w adapterze przepływu do zastosowań inline.

Kleje i uszczelniacze stanowią dodatkowe wyzwanie w pomiarach i kontroli lepkości ze względu na ich wysoce nienewtonowskie właściwości przepływu. Płyn Newtona wykazuje tę samą lepkość bez względu na prędkość wrzeciona obracającego się instrumentu, takiego jak reometr lub wiskozymetr. Płyny nienewtonowskie są wrażliwe na szybkość ścinania – ich lepkość mierzona zależy od prędkości obrotowej wrzeciona reometru obrotowego lub od charakterystyki drgań urządzenia opartego na rezonatorze mechanicznym.

Zachowanie zależne od ścinania ma zasadnicze znaczenie dla większości klejów i uszczelniaczy. Muszą swobodnie spływać podczas nakładania na podłoże, ale muszą pozostać na swoim miejscu aż do całkowitego związania, bez ociekania lub ściekania z fugi. Takie materiały są nie tylko zależne od szybkości ścinania, ale mogą wymagać pewnej siły, aby się poruszyć. Zachowują się jak ciała stałe, gdy nie są zakłócone, ale gdy są pewne granica plastyczności zostanie przekroczona, płyną jak ciecze. I mogą być zależne od czasu lub tiksotropowy, pozostające w stanie płynnym po ścięciu i powracające do postaci stałej dopiero po pewnym czasie regeneracji.

Reometry (iw mniejszym stopniu wiskozymetry rotacyjne) są w stanie dostarczyć całą serię pomiarów, które mogą całkowicie scharakteryzować zachowanie nawet złożonych płynów nienewtonowskich w środowisku laboratoryjnym. Interpretacja danych reometrycznych w celu przewidywania rzeczywistego zachowania tych złożonych materiałów jest trudna i często niełatwa do zastosowania w procesach przemysłowych. Z drugiej strony czujniki oparte na elementach wibrujących generują pojedyńczy punkt pomiary; odczytują lepkość pozorną przy pojedynczej wartości szybkości ścinania, która jest często znacznie wyższa niż szybkość ścinania stosowana w przyrządach obrotowych. Z tego powodu pomiary płynów nienewtonowskich wykonane za pomocą wiskozymetrów rezonansowych zwykle nie zgadzają się z wynikami przyrządów rotacyjnych. Pomimo tej różnicy we wskazanych lepkościach pomiędzy dwoma typami przyrządów, wiskozymetry wibracyjne okazały się przydatne dla monitoring i kontrola lepkości płynów silnie nienewtonowskich.

Istnieją dwa obszary zastosowań, w których wygoda i solidność wiskozymetrów wibracyjnych czyni je idealnymi do pomiaru monitóworing oraz kontrola klejów i uszczelniaczy. Pierwszym z nich jest wbudowany monitoring lepkościoring do aplikatorów. Drugi to kuracja-monitoring do operacji wsadowych, w których krytyczne jest wykrycie, kiedy zmieszana partia materiału zbliża się do końca okresu przydatności do użycia.

Inline monitor lepkościoring do aplikatorów

Szczeliwa muszą swobodnie płynąć podczas procesu aplikacji, ale nie mogą spływać ani zwisać po aplikacji przed całkowitym utwardzeniem. Wymaga to, aby efektywna lepkość materiału była silnie zależna od ścinania, miała niską lepkość przy wysokich szybkościach ścinania, które występują w przewodach obsługujących aplikator i w samej dyszy aplikatora, oraz wysoką lepkość, a nawet granicę plastyczności po dozowaniu .

Pomimo znaczenia właściwości płynięcia klejów i uszczelniaczy, szczególnie w przypadku szybkiego automatycznego dozowania i nakładania, niewiele jest dostępnych informacji na temat oprzyrządowania wbudowanego do monitorowania lub kontroli konsystencji kleju i uszczelniacza.

Rheonics zainstalowała wiskozymetry liniowe SRV w wysokoobrotowej prasie do laminowania, w której niezbędna jest kontrola lepkości. Operator prasy wypróbował wiskozymetry rotacyjne dla monitóworing lepkość kleju, ale zanieczyszczenie części obrotowych wyschniętym klejem sprawiło, że ich użycie stało się niepraktyczne. Obecnie do monitorowania lepkości stosuje się kubki wypływoweoring, ale są one szczególnie nieprecyzyjne i nie są pomiarami prawdziwie wbudowanymi. Ich stosowanie jest czasochłonne, co sprawia, że ​​częste pomiary są niepraktyczne i dlatego umożliwiają większe niż pożądane wahania lepkości, a tym samym charakterystyki płynięcia kleju do laminowania. Problem pogłębia się w przypadku maszyn do laminowania o dużej szybkości, ponieważ wałek nakładający zazwyczaj porusza się w otwartym korycie kleju, z którego stale odparowuje rozpuszczalnik, jak pokazano na poniższej ilustracji:

Zbiornik kleju w szybkoobrotowej maszynie do laminowania

Rysunek 2. Zbiornik kleju w szybkoobrotowej maszynie do laminowania.

 

Podobnie jak w przypadku farb drukarskich w maszynach fleksograficznych i rotograwiurowych, to stopniowe parowanie stopniowo podnosi lepkość nośnika, wymagając okresowego dozowania rozpuszczalnika w celu ustabilizowania nośnika na prawie stałej lepkości, zapewniającej prawidłową aplikację podczas długich, szybkich przebiegów.

Wibracyjne czujniki lepkości są wyposażone w rezonatory, które zazwyczaj działają w zakresie częstotliwości od kilkuset herców do kilkudziesięciu kiloherców, w zależności od konkretnej zasady działania. Chociaż nie jest możliwe określenie rzeczywistej szybkości ścinania, zakres szybkości ścinania jest duży, równy lub przekraczający prędkości występujące w sprzęcie dozującym. Z tego powodu w monitorach przydatne są wibracyjne czujniki lepkościoring konsystencja kleju i jego działanie podczas operacji dozowania.

Wiskozymetry wibracyjne działają na zasadzie pomiaru tłumienia drgań indukowanych w rezonatorze mechanicznym zanurzonym w cieczy. Rezonatory stosowane w wiskozymetrach wibracyjnych dzielą się na dwie ogólne kategorie: te, które wibrują poprzecznie, takie jak kamertony i belki wspornikowe, oraz te, które wibrują skrętnie. Rezonatory skrętne są szczególnie przydatne do pomiaru wyższych lepkości, często spotykanych w przypadku uszczelniaczy i klejów, ponieważ drgania poprzeczne są zwykle silniej tłumione przez płyny o dużej lepkości. Rezonatory skrętne są również zwykle mniej wrażliwe na bliskość ścian rur i innych zbiorników, co czyni opcje instalacji bardziej elastycznymi. Gdy lepkość ma być mierzona bezpośrednio w systemie aplikacji, korzystna może być zwartość mechaniczna, ponieważ linie przepływu mają często małą średnicę i stosunkowo niskie natężenia przepływu w porównaniu z innymi zastosowaniami procesowymi. Ponieważ czujniki wibracyjne mają tendencję do wytwarzania sił reakcji podczas mocowania, które mogą wpływać na ich czułość, czujniki wyważone wibracyjnie są szczególnie wolne od wpływów środowiska, które wpływają na rezonatory niezrównoważone. Rheonics Wiskozymetr liniowy SRV oparty jest na opatentowanym rezonatorze zrównoważonym skrętnie. [2]

Monitoring stopień utwardzenia w klejach mieszanych wsadowo

Kolejnym ważnym obszarem zainteresowania klejem jest monitoring stopnia utwardzenia klejów i żywic. Jest to ważne w zastosowaniach klejów, ponieważ umożliwia określenie, czy konkretna partia materiału osiągnęła niezbędne właściwości mechaniczne, a nie tylko poleganie na specyfikacjach producentów i dostosowaniu parametrów procesu. W operacjach formowania ważne jest określenie, kiedy można bezpiecznie wyjąć z formy utwardzoną część, a przy produkcji kompozytów, aby określić, kiedy laminowana część jest całkowicie utwardzona.

Dla monit opublikowano wiele metodoring stopień utwardzenia, ale większość opiera się na pomiarach pośrednich, takich jak właściwości elektryczne lub optyczne, a nie na bezpośrednim pomiarze właściwości mechanicznych. Dostępne są eksperymentalne metody ultradźwiękowe, ale zwykle ograniczają się one do bardzo małych próbek w ściśle kontrolowanych warunkach, ponieważ tłumienie fal ultradźwiękowych może być dość duże podczas procesów utwardzania [3]. Ponadto pomiary ultradźwiękowe są zwykle przeprowadzane w zakresie częstotliwości megahercowych, które w przypadku materiałów nienewtonowskich mogą nie odzwierciedlać ich zachowania przy szybkościach odkształcenia bliższych tym, które można znaleźć w ich rzeczywistych zastosowaniach.

Urządzenie, Rheonics CureTrack™ jest obecnie testowany przez Rheonics GmbH. Przewiduje żelowanie w partiach wstępnie zmieszanych klejów i uszczelniaczy. Ryc. 2 poniżej przedstawia urządzenie CureTrack podczas jego stosowania w badaniu laboratoryjnym.

 

Rysunek 3. Urządzenie obecnie testowane jest oparte na czujniku lepkości ze zwężeniem Luera na końcu, aby umożliwić podłączenie konwencjonalnej jednorazowej igły dozującej w celu wydłużenia czułego elementu.

Rysunek 3. Urządzenie CureTrack ze zbliżeniem probówki na próbkę i końcówki igły

Urządzenie CureTrack opiera się na Rheonics Czujnik lepkości SRV ze stożkiem typu Luer na końcówce umożliwiającym podłączenie konwencjonalnej jednorazowej igły dozującej w celu przedłużenia jej czułego elementu. Dzięki zastosowaniu jednorazowej przedłużki sam czujnik nie jest narażony na działanie kleju; igłę można po prostu odłączyć i wyrzucić razem z zżelowanym lub stwardniałym materiałem.

CureTrack wyprowadza dwie liczby: tłumienie i częstotliwość rezonatora instrumentu. Tłumienie zależy od lepkości materiału, a częstotliwość od jego sztywności. Wynik CureTrack daje zatem obraz lepkosprężystego zachowania materiału podczas procesu żelowania i utwardzania.

Figi. 3 i 4 pokazują krzywe utwardzania dwóch różnych systemów epoksydowych, zarejestrowane przez CureTrack. Pierwszym z nich jest konsumencki klej epoksydowy z utwardzaczem na bazie tioli, Pacer Technology PT39 Z-Poxy 30 Minute Epoxy. Określa się go jako ma 30 minut czasu utwardzania i jest powszechnie sprzedawany w sklepach hobbystycznych do budowy modeli. Druga to żywica Axson Epolam 2017 z utwardzaczem Epolam 2018, aminowym systemem utwardzania stosowanym do kompozytów laminowanych na mokro. Znamionowy czas żelowania wynosi 6 godzin przy stosunku wagowym żywica/utwardzacz 100:30 w temperaturze 23 °C w procesie laminowania, w którym duża powierzchnia ogranicza nagrzewanie egzotermiczne i przyspieszenie procesu utwardzania

Rysunek 4. Krzywe utwardzania CureTrack szybkoutwardzalnego konsumenckiego kleju epoksydowego Pacer Pt39 Z-Poxy. Wykres pokazuje tłumienie i częstotliwość CureTrack z fazami kleju: płynną, żelowaną i utwardzoną w stanie stałym.

Rysunek 4. Krzywe utwardzania CureTrack szybkoutwardzalnego konsumenckiego kleju epoksydowego Pacer Pt39 Z-Poxy. Wykres pokazuje tłumienie i częstotliwość CureTrack z fazami kleju: płynną, żelowaną i utwardzoną w stanie stałym.

 

Rys. 5. Krzywe utwardzania żywicy epoksydowej do laminowania wolnoutwardzalnego z utwardzaczem w stosunku wagowym 100:30. Wykres przedstawia fazę ciekłą, żelowaną i stałą utwardzoną żywicy.

Rysunek 5. Krzywe utwardzania CureTrack wolnoutwardzalnej żywicy epoksydowej do laminowania Żywica Epolam 2017 z utwardzaczem 2018 w stosunku wagowym 100:30. Wykres przedstawia fazy ciekłej, żelowanej i utwardzonej w stanie stałym żywicy.

 

Podstawowym wskaźnikiem zbliżającego się żelowania jest więc szybki wzrost wskazanej lepkości, po którym następuje wzrost częstotliwości rezonansowej rezonatora czujnika.

Krzywe te pokazują dwa odrębne procesy i trzy regiony.

Procesy to żelowanie i utwardzanie. Żelowanie to proces charakteryzujący się wzrostem tłumienia i wzrostem częstotliwości, odzwierciedlającym wzrost zarówno lepkości, jak i sztywności żywicy. Materiał przechodzi ze stanu płynnego do zżelowanego. Utwardzanie, które charakteryzuje się zmniejszaniem tłumienia i zwiększaniem sztywności, jest procesem następującym po żelowaniu, które przekształca materiał z bardzo lepkiej, lepkiej masy w sztywną bryłę. Procesy te określają również trzy stany, przez które materiał przechodzi podczas żelowania i utwardzania:

  1. Obszar cieczy, w którym sztywność materiału jest bardzo niska, odzwierciedla się w niskiej i stosunkowo stałej częstotliwości rezonatora CureTrack. W tym rejonie lepkość jest również stosunkowo niska, na co wskazuje niska wartość tłumienia.
  2. Obszar zżelowany, w którym zarówno sztywność, jak i tłumienie materiału szybko rosną. Materiał w tym rejonie jest lepki – ma wysoką lepkość, która osiąga maksimum, wskazując na szczyt procesu żelowania przed rozpoczęciem krzepnięcia. Staje się sztywniejszy, tworząc gumowatą masę przed ostatecznym utwardzeniem.
  3. Region stały. Tłumienie ponownie spadło do niskiej i stosunkowo stałej wartości. Rezonator wytwarza teraz przede wszystkim sprężyste ścinanie materiału, z niewielkim rozproszeniem spowodowanym siłami lepkości.

Dwa zestawy krzywych ilustrują zdolność CureTrack do wyczuwania początku procesu żelowania, a także dostarczają danych ilościowych, które umożliwiają śledzenie całego procesu utwardzania.

Szymkin [4] opublikował znakomity artykuł recenzujący stan monitu utwardzania klejuoring. Dochodzi do wniosku, że chociaż istnieje wiele metod monitoring czas żelowania, brak jest zarówno komercyjnej bazy instrumentów, jak i ogólnego braku standardów, a co za tym idzie, zgodności pomiędzy różnymi metodami pomiarowymi.

Większość metod omawianych przez Shimkina jest pośrednich, takich jak analiza dielektryczna, ponieważ mierzą one właściwość układu żywicy skorelowaną z jego właściwościami mechanicznymi, ale nie mierzą bezpośrednio właściwości, które są funkcjonalnie ważne przy stosowaniu żywicy system. W tym sensie każda technologia pomiarowa, która bezpośrednio mierzy właściwości, takie jak żelowanie i krzepnięcie, zapewnia natychmiastową, bezpośrednią informację zwrotną o stanie żywicy.

Zastosowania technologii CureTrack

Bezpośredni pomiar właściwości mechanicznych systemu żywic ma zastosowanie zarówno w laboratorium, jak i na hali produkcyjnej, gdzie żywice są mieszane, nakładane i utwardzane w środowisku produkcyjnym.

W laboratorium solidne narzędzie do analizy mechanicznej, takie jak technologia CureTrack, może być wykorzystywane zarówno do badań i rozwoju, jak i do kontroli jakości. W laboratorium badawczo-rozwojowym można go wykorzystać do analizy właściwości utwardzania nowych żywic i preparatów. Jego prostota oraz zastosowanie niedrogich i jednorazowych elementów czujnikowych umożliwia ekonomiczną analizę dużej liczby próbek bez ryzyka uszkodzenia drogich czujników lub wymagającego rozległego i czasochłonnego czyszczenia trudnych do usunięcia pozostałości. W celu kontroli jakości zmieszane próbki żywicy mogą być monitorowane w laboratorium bez czasochłonnego przygotowania lub czyszczenia.

Podobnie, dla celów kontroli jakości, solidność technologii może poruszyć monitoryoring mieszanych partii produkcyjnych do hali produkcyjnej, zamiast pobierać próbki do analizy laboratoryjnej. Instrumenty takie jak CureTrack można umieścić bezpośrednio w wiadrze z żywicą, aby monitorować jej stan w miarę postępu produkcji i emitować alarm ostrzegawczy, gdy zbliża się żelowanie, a wszelki pozostały materiał należy wyrzucić, zanim stwardnieje.

Przyszły rozwój technologii skupi się również na monitoring żelowanie w rzeczywistych scenariuszach produkcyjnych. Na przykład końcówkę sondy można zetknąć z powierzchnią układu nasyconego żywicą w celu monitorowania stanu materiału matrycy. Można też wprowadzić końcówkę sondy na kontrolowaną głębokość do wylanego uformowanego elementu i wyjąć ją w miarę rozpoczynania się żelowania.

Ponieważ temperatura jest istotnym czynnikiem przy określaniu szybkości utwardzania, CureTrack zawiera czujnik temperatury, który mierzy temperaturę na końcówce sondy. Może mierzyć temperaturę dokładnie w miejscu, w którym mierzone jest żelowanie i utwardzanie, umożliwiając jedno i drugie monitorowanieoring temperaturę żywicy i śledzenie wytwarzania ciepła podczas procesu utwardzania.

Referencje

  1. Linki do informacji na temat wykorzystania wiskozymetrii inline do zastosowań drukarskich można znaleźć w https://rheonics.com/solutions/
  2. https://rheonics.com/products/inline-viscometer-srv/
  3. Materiały 2013, 6, 3783-3804; doi:10.3390/ma6093783 materiały ISSN 1996-1944 www.mdpi.com/journal/materials Recenzja Monitoring Stan utwardzania żywic termoutwardzalnych według ultradźwięków Francesca Lionetto i Alfonso Maffezzoli
  4. ISSN 1070-3632, Russian Journal of General Chemistry, 2016, tom. 86, nr 6, s. 1488–1493. Pleiades Publishing, Ltd., 2016. Oryginalny tekst rosyjski AA Shimkin, 2014, opublikowany w Rossiiskii Chimicheskii Zhurnal, 2014, t. 58, nr 3–4, s. 55–61.

Dla autorów

Dr Joe Goodbread

Dr Joe Goodbread

Dr Goodbread jest członkiem-założycielem zespołu, który się rozwinął Rheonicskluczowych technologii na przestrzeni ostatnich 30 lat. Założył i kierował Laboratorium Mechaniki Doświadczalnej w Instytucie Mechaniki. ETH Zurych. Opracował znaczącą własność intelektualną w dziedzinie czujników właściwości płynów z 9 przyznanymi patentami i ponad 12 w toku. Uzyskał tytuł BSE w dziedzinie lotnictwa i inżynierii mechanicznej na Uniwersytecie Princeton, tytuł magistra biomechaniki na Uniwersytecie Stanforda oraz tytuł doktora technologii. sc. z ETH Zurich w dziedzinie biomechaniki. Doktor Goodbread jest także z wykształcenia psychoterapeutą i założycielem Instytutu Pracy z Procesem. Opublikował kilka książek na ten temat. Rozległe umiejętności badawcze i inżynieryjne dr Goodbread stanowią techniczny rdzeń Rheonics' produkty i usługi. Jego pasja do innowacji i stawiania czoła niemożliwym wyzwaniom stworzyła wiodące w branży produkty

Dr Sunil Kumar

Dr Sunil Kumar

Dr Kumar ma rozległe doświadczenie w czujnikach i sektorze energetycznym, które na początku swojej kariery zawodowej piastował na różnych stanowiskach w inżynierii i badaniach. Ostatnio kierował globalną inżynierią w zakresie usług wiertniczych dla Baker Hughes. Dr Kumar założył firmy w USA i Wielkiej Brytanii, które z powodzeniem komercjalizowały innowacyjne produkty. Uzyskał stopień doktora w dziedzinie inżynierii elektrycznej w Imperial College w Londynie, tytuł magistra w dziedzinie inżynierii mechanicznej na Uniwersytecie Kalifornijskim oraz tytuł licencjata w dziedzinie inżynierii lotniczej w IIT Kharagpur. Opracował sejsmometr, który został wystrzelony jako główny ładunek misji NASA Insight na Marsa w 2018 r., a także opracował chipy do pobierania próbek gleby AFM, które wykorzystano do analizy gleby podczas misji NASA Phoenix na Marsa w 2006 r. Jest płodnym wynalazcą, posiadającym ponad 30 patentów i wiele recenzowanych artykułów. Wizja dr Kumara dotycząca stworzenia czujników do pomiaru właściwości płynów, które rewolucjonizują monitorowanie procesu in-lineoring, kontrola i optymalizacja służą jako charter dla Rheonics.

Przegląd

Magazyn branżowy zajmujący się klejami i uszczelniaczami – ASI publikuje obszerny artykuł dotyczący Rheonics Wiskozymetr wbudowany SRV i Rheonics CureTrack™, obecnie testowany przez Rheonics. W artykule omówiono technologię i zasady działania, ze szczególnym uwzględnieniem badań i rozwoju, rzeczywistych scenariuszy produkcji i celów kontroli jakości w zastosowaniach w przemyśle klejów i uszczelniaczy.

Znajdź link do publikacji.

Magazyn ASI – funkcja strony internetowej
Pobierz publikację

Powiązana nota aplikacyjna

Lepkość i reologia uszczelniaczy i klejów w formułowaniu, testowaniu i stosowaniu

Lepkość i reologia uszczelniaczy i klejów w formułowaniu, testowaniu i stosowaniu

Kleje i uszczelniacze są szeroko stosowane do łączenia, ochrony i uszczelniania systemów w budownictwie, produkcji i konserwacji. Branża ta stoi przed wyzwaniami ze względu na ograniczone surowce (zapas ropy) oraz negatywny wpływ związków syntetycznych na…

Czytaj więcej
Szukaj